Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (a)}$	Idea that (a change in) one variable (directly) results in the change of another variable ;	ALLOW causes, affects, etc and clear examples Eg increase in blood cholesterol causes an increase in the risk of CVD	IGNORE correlation, link, relationship, trend, etc alone

Question Number	Answer	Additional guidance	Mark
(b) (i)	1. reference to peptide bonds (joining amino acids); 2. between amino group (of one amino acid) and carboxyl group (of another) / eq ; 3. the sequence of amino acids is the primary structure of the protein / eq ; 4. reference to folding (of primary structure) held together by bonds / eq ; 5. \{disulfide bridges / eq\} / \{hydrogen / $\mathrm{H}\}$ bond / ionic bonds / Van der Waals forces ; 6. between the R groups / eq ;	2. AL W from a labelled diagram ALLOW NH2 and COOH 4. AL W ref to alpha helix or beta pleated sheet	(4)

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 ~ (b) (i i) ~}$	1. HDL is smaller ; 2. HDL contains more protein / eq ;	ALLOW converse for LDL	
3. HDL contains less cholesterol / eq ;		(2)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (i)}$	1. (risk due to) high blood pressure has fallen overall / eq ;	Answers should cover total time period and not just $1980-1990$	
	2. (risk due to) high blood cholesterol has fallen overall / eq ;	(risk due to) obesity has risen overall / eq ;	4. obesity was the lowest risk factor but is now the highest / eq ;
5. credit use of manipulated figures ;	5. o y credit overall change figures e.g. 17% drop for high blood pressure 16% drop for high blood cholesterol 10.5% increase in obesity	(3)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (i i)}$	1. people more aware of the risks / eq ;	1. ALLOW more aware of healthy diets	
	2. people consuming foods with lower \{cholesterol levels / saturated fats / eq\} / eq ;		
3. people consuming foods with more fibre in them / eq ;	4. use of statins / eq ; 5. more screening / eq ;	4. Use f sterols/named example	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (\text { iii) }}$	Any two from: (being) male increase in age lack of exercise / inactivity smoking genetics high alcohol consumption high salt diet high saturated fat intake stress diabetes ;	IGNORE fat, LDL or cholesterol consumption	(1)

Question Number	Answer	Mark
2(a)(i)	1. no \{amino / amine / $\left.\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{+}\right\}$group ; 2. no \{carboxyl / carboxylic acid / $\left.\mathrm{COOH} / \mathrm{COO}^{-}\right\}$ group ;	
3. no \{central / alpha\} carbon (atom) / eq ; 4. no $\{\mathrm{R} /$ residual\} group(s) ; 5. ring structures present (amino acids only have them in some R groups) / eq ;	(2)	

Question Number	Answer	Mark
$\mathbf{2 (a) (i i)}$	1. idea that position of CH_{3} different ; 2. idea that position of $\{\mathrm{H} / \mathrm{NH} / \mathrm{N}-\mathrm{H}\}$ different ; 3. reference to being isomerically different ;	(2)

Question Number	Answer	Mark
$\mathbf{2 (a) (i i i)}$	1. idea of specificity of \{active site/enzyme\} ; 2. idea that the products are different \{shapes / structures ; 3. idea that P450 consists of (at least) three \{enzymes / active sites\} ; 4. idea that products could be interconverted ;	(3)

Question Number	Answer	Mark
2(b)	Conclusion 1: 1. idea that the first conclusion is \{valid for some of the data / not valid (for all data) / misleading /eq\} ; 2. coffee and hot chocolate do have different concentrations OR only 4 drinks tested / concentration not measured / volumes not controlled / eq ; 3. idea that the second conclusion is not valid ; 4. no indication of the volumes of tea and cola / volume not controlled / impossible to calculate concentration of caffeine in all four drinks (using information given) / eq ;	(3)

Question Number	Answer	Mark
3(a)	1. amino acids ; 2. peptide; 3. condensation / polymerisation ; 4. amino / amine / $\mathrm{NH}_{3}{ }^{+} / \mathrm{NH}_{2}$; 5. carboxyl / carboxylic (acid) / $\mathrm{COO}^{-} / \mathrm{COOH}$; [Accept answers for 4 and 5 the opposite way round]	(5)

Question Number	Answer	Mark
3(b)(i)	ALLOW Mps in context of clearly labelled diagram 1. globular / eq ; 2. reference to active site ; 3. reference to specific shape of active site ; 4. reference to \{bonds /named bond / interaction / eq\} between R groups ; 5. credit correctly named \{bond/interaction\} e.g. disulphide bond, hydrogen bonds, hydrophobic interactions (between R groups) ;	(3)

Question Number	Answer	Mark
$\mathbf{3 (b) (i i)}$	1. (primary structure) \{position / sequence / order /eq\} of the \{amino acids / R groups\} / eq ;	
2. idea that this determines the \{positioning / type\} of the \{bonds / folding / eq\};	3. determining the \{shape / properties\} of the active site / eq ;	4. idea of interaction of active sites and substrates e.g. enzyme substrate complex forms ;
5. idea of \{polar / hydrophilic\} on the outside of enzymes / \{non polar / hydrophobic\} on the inside / eq ;	(3)	

Question Number	Answer	Mark
4(a)(i)	C;	(1)

Question Number	Answer	Mark
4(a)(ii)	D;	(1)

Question Number	Answer	Mark
4(a)(iii)	D ;	(1)

Question Number	Answer	Mark
4(b)(i)	1.humans more closely related to chimp (than to orang utan and gorilla) / eq ; 2. reference to humans and chimps more closely related to orang utan than gorilla ; 3. reference to similarity of sequence indicates closeness of ancestral relationship / eq ; 5. orang utan has one difference, gorilla has two and chimp sequence identical / eq ; differences / eq ; 6. reference to \{number 19 for orang utan / number 9 and 19 for gorilla\} different ;	(4)

Question Number	Answer	Mark
4(b)(ii)	1. reference to similarity (of DNA) indicates closeness of relationship ;	
2. because genes are sections of DNA / eq ; 3. genes are the codes for protein / eq ;	(2)	

Question Number	Answer	Mark
4(b)(iii)	1. reference to source of DNA sample, e.g. blood, saliva, semen ; 2. reference to small samples of DNA can be amplified by PCR ; 3. reference to use of (restriction / eq) enzymes to \{break / eq\} DNA ; 4. reference to use of \{electro potential / potential difference / eq\}; 5. reference to $\{t r e a t m e n t / s t a i n i n g / e q\} ;$ 6. show up as $\{b a n d s / b a r s / e q\}$; 7. reference to the \{number of bands / eq\} that match indicates similarity of the DNA ;	(3)

